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Abstract-A theoretical approach based upon the use of Newtonian eddy viscosity correlations has been 
applied to the calculation of heat transfer coefficients for non-Newtonian and drag-reducing liquids in fully- 
developed turbulent pipe flow. Previously published data of Gupta [19] and Friend [21], over a Reynolds 
number range of 6 x 1O3-1.5 x 105, have been compared with the predicted values and good agreement has 

been obtained. 

NOMENCLATURE 

A, B, constants in the logarithmic law of the wall ; 
C,, C,,constants in eddy viscosity expressions; 

CD 
Ch, 

n, 
NUT 
Pr, 
Pr,,, 
4 ,9 

4 W, 

2 
R’+, 

Re, 

T, 
T’+, 

Fanning friction factor (2~,/p(v,)~); 
the Stanton number (h/pC,(v,)), dimension- 
less heat transfer coefficient ; 
heat capacity [J kg-‘K-l]; 
pipe diameter [m] ; 
heat transfer coefficient [W me2 K-l]; 
thermal conductivity [W m- ’ K- ‘1; 
parameter in power-law expression for non- 
Newtonian viscous properties 

[kgm 1, 
-lsn-2 

index in power-law expression ; 
Nusselt number (hD/k); 

Prandtl number (pCJk); 

turbulent Prandtl number (E,,/E,,~); 
radial heat flux [W m-‘1 ; 
wall heat flux [W mm21 ; 
radial distance [m] ; 
pipe radius [m] ; 
dimensionless radius (pRv*/p); 

Reynolds number (p(v,)D/p); 
temperature [K] ; 
dimensionless temperature 

T- T,l(q,l~C,v*); 
velocity [m s- ‘1; 
dimensionless velocity (u,/u*); 
mean velocity [m s- ‘1; 
friction velocity [J(7Jp)] [m s- ‘1; 
distance from pipe wall, m; 
dimensionless distance (pyu*/p); 
axial distance [m]. 

Greek letters 

2 
constant in logarithmic temperature profile; 
constant in temperature correction of Kader 
and Yaglom [l l] ; 

P 
A” 

constant in logarithmic temperature profile ; 
shear rate [s- ‘I; 

tPresent address: ICI. Corporate Laboratory, Runcorn, 
U.K. 

El., eddy viscosity [m2 s- ‘1; 

&hr, eddy diffusivity for heat [m2 s- ‘1; 

PC, viscosity [kg m- ‘s- ‘I; 

P, density [kg m- “I; 
7 ,I, shear stress [kgm-’ se2]; 

7w wall shear stress [kgm-’ sm2]. 

Subscripts 

b, bulk value; 

0, centreline value; 

4, dummy integration variable; 

w, at the pipe wall. 

Superscripts 

-, time average variable. 

INTRODUCTION 

MOST flows of engineering importance are turbulent 
and viscosities must be high before laminar flow 
predominates. When viscosities are high the fluids are 
often non-Newtonian in character. Thus, in the field of 
non-Newtonian flow laminar flow tends to predom- 
inate. However, there are still many instances in 
which turbulent flow of non-Newtonian fluids is 
encountered. In addition, there is an increasing use of 
high-polymeric additives to achieve reductions in 
frictional drag. The present paper will deal with heat 
transfer to both non-Newtonian and drag-reducing 
fluids in turbulent pipe flow. 

Both slurries of approximately spherical particles 
and polymer solutions can, under certain circum- 
stances, flow turbulently without exhibiting anom- 
alous wall effects. The effects in question are wall ‘slip’ 
with slurries and drag-reduction with polymers. We 
have previously considered [l] the flow of non- 
Newtonian fluids in the absence of anomalous wall 
effects and it was concluded that mean velocity profiles 
and friction factors for Newtonian and non- 
Newtonian fluids can be represented on the same basis 
if we replace the Newtonian viscosity by the apparent 
viscosity at the wall. 

Numerous studies have been undertaken to charac- 
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terize drag reduction phenomena in polymer so- 
lutions. The fact that the addition of very small 
concentrations of dissolved high polymeric substances 

can reduce frictional resistance in turbulent flow to as 
low as one quarter of that of the pure solvent makes the 
phenomenon potentially very important. The effect of 
additives on fluid friction has been the subject of 

reviews by Hoyt [2], Lumley [3] and Virk [4]. 
Drag-reduction is illustrated in Fig. 1. A phenom- 

enon closely related to drag-reduction, transition 
delay, is illustrated in Fig. 2. The behaviour shown in 
Fig. 2(a) is typical of soap solutions [5] and that in Fig. 

2(b) typical of certain types of polymer solutions, such 
as polyacrylamide in water [6]. The distinction be- 
tween the two phenomena is that with drag-reduction 
the flow attains non-drag-reducing fully-developed 

turbulent flow before it is affected by the polymer. 
Drag reduction and transition delay are no doubt 

related but, on the basis of the available evidence, there 
appear to be significant differences. Transition delay 
will not be considered in this work and only the 

phenomena illustrated by Fig. 1 will be treated. 

We have previously demonstrated [7] how New- 
tonian eddy viscosity expressions can be applied to 

drag-reducing flows. In that work, eddy viscosity 

expressions were used to predict velocity profiles 
which were in good agreement with experimental 

measurements. 

In this paper, the methods outlined previously [ 1,7] 
for extending Newtonian correlations to non- 

Newtonian and drag-reducing flows will be extended 
to consider non-isothermal flows for the prediction of 

heat transfer coefficients. 

THE INTEGRATION OF THE ENERGY EQUATION 

Consider axisymmetric pipe flow of an incom- 
pressible fluid with a fully-developed velocity profile. 

Neglecting axial heat conduction and viscous dissi- 
pation the equation of energy is 

where qrefl is the effective radial heat flux given by 
_ 

aerr = - (k + PC,C,,)~. 
The eddy diffusivity E,,, in equation (2) can be 

replaced by the relationship 

where E,, is the eddy viscosity and Prrr the turbulent 
Prandtl number. 

For fully-developed flows equation (1) has been 

integrated for the case of constant wall flux by Lyon 

(a) Drag reduction : the diameter effect 

.orger 

mailer 

Pipe 

Pipe 

of polymer 

(bl Drag reduction : differing fluids 

- Newtonian behaviour 

----- Drag -reducing behaviour 

FIG. 1. Drag reduction phenomena 



Heat transfer to non-Newtonian and drag-reducing fluids 1061 

D,< D2< Dg 
‘\ 

‘x. 

Re 

(alTransition delay : saap solutions. 

c f 

Y:_ 
\’ \- \‘. 

*:.._ 
‘. 

*. ::_ Larger 
- 

Re 
‘Smaller 

(b) Transition delay : polymer solutions. 

- Newtonian behaviour 

----- Transition delay behaviour 

FIG. 2. Transition delay phenomena. 

[8] and for the case of constant wall temperature by 
Seban and Shimazaki [9]. The expressions developed 
by Lyon and by Seban and Shimazaki are very 
complex and require the solution of double integrals. 
However, simplified integrations of equation (1) have 
been presented previously [lo] assuming that the 
radial heat flux across the pipe varies linearly with 
radial position. Two expressions for the dimensionless 
heat transfer coefficient can be developed. The first 
involves integration with respect to dimensionless 
distance y+ [lo], i.e. 

G = &/2) i 
/ 

(1 - y+/R+)dy+ 
i( >I - B. (4) 

The second expression involves integration with re- 
spect to the dimensionless velocity, o:, i.e. 

Ch = JWJP) 
i 

[4.07,/(Cf/2) + 11 - B (5) 

pipe 
pipe 

and is derived in the Appendix. 
In equations (4) and (5), /I is the temperature 

correction factor of Kader and Yaglom [l l] which is 
discussed in the Appendix. 

The turbulent Prandtl number Pr,, has been con- 
sidered previously [28] and it was concluded that, in 
the light of the confusing and contradictory exper- 
imental evidence, it is reasonable to adopt a value of 
Pr,, equal to unity, which is the value used in this work. 

Before solving either equation (4) or (5) it is 
necessary to define the eddy viscosity, E,,. This is 
considered below. 

EDDY VISCOSITY EXPRESSIONS FOR 
NON-NEWTONIAN AND DRAG-REDUCING 

FLUIDS 

In a previous publication [7] we demonstrated how 
four standard Newtonian eddy viscosity expressions 
could be successfully adapted to predict velocity 
profiles in drag-reducing fluids. These expressions 
were due to Spalding [12], Wasan, Tien and Wilke 
[13], Mizushina and Ogino [ 141 and van Driest [ 151. 
The forms of the various expressions are as follows. 
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(lj Spa/ding [12] 
Spalding suggested an exponential function for the 

eddy viscosity which decayed to the wall as the cube of 
the distance, i.e. 

This expression predicts a mean velocity profile which 
at high values of y+ approaches asymptotically the 
logarithmic law of the wall, i.e. 

-+ 
UZ =Alny+ +I?. (7) 

(2) Wasun, Tien and Wilke [13] 
These authors proposed an expression based on a 

series expansion of the mean velocity profile in the 
near-wall region, i.e. 

P-S* - 4ciy+3 - 5c3y+4 

_ = 1 + 4c,y+3 + 5c3y+4 
(8) 

p 

where C, and C3 are constants which are determined 
by matching the values of r$ and the first and second 
derivatives of I?: predicted by equation (8) with the 
corresponding values given by the logarithmic law of 
the wall, equation (7). The details of the computation 
of Ci and C2 have been published previously [7,28]. 

(3) Mizushina and Ogino [14] 
Mizushina and Ogino divided the pipe radius into 

three zones and proposed an eddy viscosity expression 
for each, i.e. 

PC,, = by+3 for 0 I y+ 2 y: (9) 
p 

P%z Y 
+ 

_=_ 

p A 
- 1 fory: <y+ Iy: 

(10) 

PE,, = O.O7R+ fory:<y+<R+. (11) 
IJ 

To determine the values of b, y: and y; it is 
necessary to impose the restrictions that I?: and the 
first derivative of 6: should be continuous. The 
constants b and y: must be computed by an iterative 
method, the details of which are given elsewhere [7, 
143. The constant yc is given by 

y: = R+ - [R+*(l -0.28A) - 4AR+]“* 

2 
(1-v 

(4) Van Driest [15] 
Van Driest used a mixing length approach to 

develop an eddy visocity expression for the wall region, 
i.e. 

where 

aiq 
ay+ - 

2/l +/{1+4i)Ai)l[l -exp(-$Jyj. 

(14) 

The equations necessary to calculate the constant CT 
have again been given previously [7]. 

The above expressions for the eddy viscosity can be 
applied to non-Newtonian fluids by replacing the 
Newtonian viscosity expression in equations (6)-(14) 
by the apparent viscosity at the wall [l, 71. They can 
also be applied to drag-reducing fluids by assuming 

(4 

(b) 

that when drag-reducing velocity profiles are 
plotted on a law of the wall basis, a logarithmic 
region is always evident, 
that the gradient of the logarithmic region is 
constant, i.e. the coefficient A in equations 
(6))(14) is constant and equal to its Newtonian 
value of 2.5 and the coefficient B varies with the 
degree of drag reduction. 

These assumptions are supported by the evidence of 
Elata, Letver and Kabanovitz [16], Arunachalem, 
Hummel and Smith [17] and Rollin and Seyer [18]. 

In this paper two methods will be compared for the 
calculation of the coefficient B. The first is our method 
[7], i.e. 

B = ,/(2/C/ J - 2.46 In [Re ,/(Cf ..)I + 5.67 

(l5a) 

+ 4.82 (l5b) 

and the other due to Arunachalem, Hummel and 
Smith [17], i.e. 

(16) 

where the subscript N refers to the Newtonian values. 
The use of the above eddy viscosity expressions in 

calculating dimensionless heat transfer coefficients 
using equations (4) or (5) is considered below. 

THE CALCULATION OF DIMENSIONLESS HEAT 
TRANSFER COEFFICIENTS FOR NON-NEWTONIAN AND 
DRAG-REDUCING FLUIDS IN TURBULENT PIPE FLOW 

The starting point for the calculation of dimension- 
less heat transfer coefficients is the evaluation of the 
coefficient B from pressure drop data in the turbulent 
region using either equation (15) or (16). This study 
uses a comparison between experimental and pre- 
dicted heat transfer coefficients using experimental 
measurements of pressure drop. However, if this 
method were to be used in design calculations, the 
pressure drop (or friction factor) must be somehow 
correlated against flowrate. This problem of cor- 
relation has been discussed elsewhere [7]. For design 
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work it would be necessary to carry out ‘turbulent 
viscometric’ measurements, in addition to the normal 
laminar flow viscometric measurements required to 
characterize the fluid, and the heat transfer coefficient 
calculated from a scaled turbulent pressure drop. 

The procedure to calculate a heat transfer coefficient 
is as follows: 

(1) From experimental pressure drop data in a tube 
of the same diameter as that used for heat transfer, 
calculate the coefficient B from either equation (15) or 

(16). 
(2) Calculate R+ from the wall shear stress (i.e. 

pressure drop) and yi from equation (12). 
(3) (a) Correlation [12]. Calculate the values of 6: 

corresponding to y: and R+ from Spalding’s ex- 
pression for the mean velocity [7]. The integral in 
equation (5) is solved numerically from 0 to i$ using 
equation (6) and from t& to t& using equation (11). 
Having evaluated the integral then the dimensionless 
heat transfer coefficient Ch can be calculated directly 
from equation (5). 

(b) Correlations of [13-151. The values of the 
constants in the various expressions must be evaluated 
by iterative procedures detailed elsewhere [7]. Each 
expression requires the determination of y:. In order 
to evaluate the integral in equation (4), it is divided 
into three zones 0 to y:, y: to y: and y: to R+. This 
integration is obtained numerically and the dimen- 
sionless heat transfer coefficient calculated directly 
from equation (4). 

A summary of the equations used is given in Table 1. 

COMPARISON BETWEEN PREDICTED AND 
EXPERIMENTAL HEAT TRANSFER COEFFICIENTS IN 

NON-NEWTONIAN AND DRAG-REDUCING FLOWS 

Previously published heat transfer data of Gupta 
[19,20] and Friend [21,22] will be used in the present 
study to compare predicted and experimental heat 
transfer coefficients. 

Gupta [19, 201 measured heat transfer coefficients 
for the flow of O.Ol%, 0.05% and 0.45% ET597 
partially hydrolyzed polyacrylamide solutions in wa- 
ter. Checks on the heat balance for the experiments 
agreed within 17 y0 for a test run with water and 8 y0 for 
0.01% and 0.05 % ET597. The 0.45 % solution exhi- 
bited transition delay, as illustrated in Fig. 2(b), and 
will not be considered in this paper. 

Gupta’s [19] viscometric data are shown in Figs. 3 
and 4. It would be expected at the low concentrations 

Table 1. Summary of the equations used to describe the eddy 
viscosity expressions for the calculation ofdimensionless heat 

transfer coefficients 

Eddy viscosity 0-y: y:-Y: y;-R+ 

[Ql 6 6 11 

I::] 
8 10 11 
9 10 11 

cw 13 10 11 

of 0.01 and 0.05 % the fluids would exhibit essentially 
Newtonian laminar flow characteristics. The solid 
lines shown in Figs. 3 and 4 indicate Newtonian 
behaviour (having a slope of unity) and it can be seen 
that this represents the data well over large ranges of 
shear rate. The variation of viscosity with temperature 
for both fluids has been represented by an exponential 
function of the form 

p = p1 exp{a,/T) (17) 

where p1 and a1 are constants and T is the absolute 
temperature. This variation of viscosity is shown in 
Fig. 5. In his original work Gupta [19] represented his 
viscometric data using the generalized power law of 
Metzner and Reed [l, 231 and accounted for vari- 
atibns in viscosity by interpolation using the &pro- 
cal of absolute temperature. The friction factor data of 
Gupta are presented in Fig. 6 which shows that the 
0.01% solution gives very little drag reduction and is 
close to Newtonian behaviour in the turbulent region. 
However, the 0.05 % solution is highly drag reducing in 
turbulent flow even though it is Newtonian in laminar 
flows. 

Table 2 gives a comparison of Nusselt numbers 
calculated from the various eddy viscosity expressions 
and Gupta’s experimental data for polymer solutions. 
Gupta found that his tests with water agreed with 
standard Newtonian empirical correlations, with a 
maximum deviation of 15.5 %. The values in Table 2 
are mean percentage deviations between predicted and 
experimental Nusselt numbers. Densities, thermal 
conductivities and heat capacities were assumed to be 
the same as for water since the polymer concentrations 
are very low. Physical properties were based on the 
arithmetic mean bulk temperature of the liquid. 

Table 3 shows values again based on the bulk 
temperature of the fluid but with the predicted Nusselt 
numbers corrected using the Sieder-Tate correction 
factor, i.e. 

N~,,,,,,tsd = NUPrcdicted {&/L)“‘14 (18) 

From Tables 2 and 3 it can be seen that 

(1) In general the agreement between theoretical 
predictions and experimental measurements is good. 

(2) The two alternative methods of calculating the 
coefficient B from either equation (15) or (16) give 
results which are comparable in accuracy. 

(3) The performance of the various eddy viscosity 
expressions differs between the two fluids. These 
liquids differed greatly in their degree of drag re- 
duction, the lower concentration solution being al- 
most Newtonian, as can be seen from the friction factor 
data shown in Fig. 6. However, the fit of the predictions 
to the data for the higher concentration solution, with 
strong drag reduction, is not significantly worse than 
for the low concentration solution. 

(4) The eddy viscosity expression which gave the 
best overall performance was that of Mizushina and 
Ogino [ 141. 
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Rc;. 3. Gupta’s viscometric data for 0.01% ET597. 
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FK. 4. Gupta’s viscometric data for 0.05 % ET597. 

FK;. 5. Temperature dependence ofGupta’s viscometric data. 
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FIG. 6. Friction factor data of Gupta and Friend. 

Table 2. Mean percentage deviations between predicted and experimental Nusselt 
numbers for the heat transfer data of Gupta [ 193 

0.01% ET597 0.05 % ET597 
- 

Eddy viscosity 3 coefficient B coeffkient B coefficient E coefficient 
expression from [lo] from [l?] from [lo] from Cl73 

WI 8.9 8.0 18.0 20.5 

[::j 20.3 15.5 19.4 14.6 13.2 10.8 14.1 13.1 
II151 8.2 7.3 16.1 17.8 

Table 3. Mean percentage deviations between predicted and experimental Nusselt 
numbers for the heat transfer data ofGupta [ 191 with predicted Nusselt numbers corrected 

by the Seder-Tate correction 

0.01% ET597 0.05 % ET597 
-- 

Eddy viscosity E coefficient B coefficient B coefficient B coefficient 
expression from [lo] from [ 171 from [lo] from [17] 

6.9 5.9 19.2 21.9 
16.4 15.4 12.8 14.9 
11.5 10.7 12.4 14.8 
6.5 5.5 20.8 22.5 
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(5) The Sieder-Tate correction improved predic- 
tions for the 0.01% fluid which showed the lower 
degree of drag-reduction but had a detrimental effect 
on the predictions for the 0.05 % fluid. 

The experimental data of Friend [Zl] will now be 
compared with theoretical predictions. Friend mea- 
sured heat transfer coefficients for the turbulent flow of 
solutions of carbopol (carboxypolymethylene) in wa- 
ter. The accuracy of their data was such that the heat 
balance checked within 15 %. Most investigators who 
have studied carbopol soiutions have assumed that 

they would not exhibit drag-reduction [24,25-J, but as 
has previously been shown, this is not always true [l]. 

The carbopol solutions used by Friend exhibited 
significantly non-Newtonian viscous characteristics. 
Figure 7 illustrates Friend’s viscometric data. It can be 
seen that the data approximate well to the power law 
behaviour 

r=Kj”. (19) 

Thus, these carbopol solutions are non-Newtonian, 
shear thinning liquids which in the turbulent region 
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FIG. 7. Friend’s viscometric data for carbopol. 

Table 5 gives the mean percentage deviations for the 

four eddy viscosity expressions averaged out over all of 
the data considered in this investigation. Although the 
van Driest [ 151 expression is seen to give the smallest 
errors overall, it is recommended that the expression of 
Mizushina and Ogino [14] be used. The errors with 
Mizushina and Ogino are almost as low as van Driest’s 
but the Mizushina expression gives a far better perfor- 
mance at high levels of drag reduction, as can be seen in 
Tables 2 and 3. In our investigation only the 0.05 “/, 
data of Gupta exhibited a significant level of drag 
reduction. 

It is worthy of note that the errors quoted in Tables 
2-5 could have been reduced by smoothing out the 
experimental friction factor data used to calculate the 
heat transfer coefficients rather than taking the actual 

Table 4. Mean percentage deviation between predicted and experimental Nusselt numbers for the heat transfer data of Friend 
PI 

0.1% carbopol 0.3 % carbopol 0.6 yf,, carbopol 
(n = 0.87) (n = 0.707) (n = 0.491) 

Eddy viscosity B coefficient B coefficient B coefficient B coefficient B coefficient B coefficient 
expression from [lo] from [17] from [lo] from [17] from [lo] from [17] 

II121 6.9 6.8 16.4 16.2 26.0 26.1 
[::I 18.4 14.5 18.2 14.3 14.5 13.5 13.8 13.0 20.9 17.9 21.0 18.0 

cw 6.8 6.7 15.8 15.7 23.6 23.7 

give only slight drag reduction (Fig. 6). Friend treated 
his data for 0.3 and 0.6 % solutions using the genera- 
lized approach of Metzner and Reed [23]. He did not 
measure any significant effect of temperature on the 
viscous characteristics for the small temperature 
ranges used in this investigation. 

Table 4 gives a comparison between predicted and 
calculated Nusselt numbers for Friend’s carbopol 
data. The values in Table 4 are mean percentage 
deviations between predicted and experimental Nus- 
selt numbers. Friend found that test runs with water 
deviated from standard empirical correlations for 
Newtonian liquids with a maximum of 9 %. 

From Table 4 it can be seen that 

(1) As with Gupta’s data the general agreement 
between theoretical predictions and experimental 
measurements is good. 

(2) The discrepancy between predictions and 
measurements increases as the fluid becomes very non- 
Newtonian. This may be as a result of trying to 
represent the flow by a single viscosity characteristic of 
the flow, i.e. the viscosity at the wall. For severe non- 
Newtonian behaviour it may be necessary to solve the 
equations of motion and energy simultaneously with 
the constitutive equation for the non-Newtonian vis- 
cosity. However, strong non-Newtonian behaviour is 
seldom a problem with turbulent flow in practice as it 
is usually associated with high viscosity and the fluid 
would be pumped under laminar flow conditions. 

measured values. This can be illustrated by consider- 
ing the data of Friend [21,22] to be purely viscous and 
calculating the required friction factors from the 
Nikuradse equation. (From Fig. 6 it can be seen that 
most of Friend’s data are apparently purely viscous.) 
Table 6 shows mean percentage deviations calculated 
on this basis. Comparing the values in Table 4 and 
Table 6 it can be seen that smoothing the friction factor 
data does in most cases reduce the errors. 

CONCLUSIONS 

(1) It has been demonstrated that four previously 
published Newtonian eddy viscosity correlations can 
be successfully adapted to predict heat transfer coef- 
ficients in both non-Newtonian and drag-reducing 
turbulent pipe flow. 

(2) Comparison between the previously published 

Table 5. Mean percentage deviations between pre- 
dicted and experimental Nusselt numbers for the heat 
transfer data of Gupta [19] and Friend [21] con- 

sidered in this study 

Eddy viscosity 
expression 

B coefficient 
from [lo] 

B coefficient 
from [17] 

15.2 15.3 
16.7 16.5 
14.6 14.8 
14.0 14.2 
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Table 6. Mean percentage deviations between predicted and experimental Nusselt 
numbers for the heat transfer data of Friend [21] and friction factors assumed to be 

purely viscous 

Eddy viscosity 0.1% carbopol 
expression (n = 0.87) 

0.3 % carbopol 
(n = 0.707) 

0.6 % carbopol 
(n = 0.491) 

K1.4 6.2 17.2 20.5 

t::; 16.1 12.1 10.3 11.6 10.7 14.3 
[151 6.1 16.3 19.0 

FIG. 8. Predicted vs experimental Nusselt numbers using the eddy viscosity correlation of Mizushina and 
Ogino [14] with the B coefficient calculated from Edwards and Smith [lo]. 

FIG. 9. Predicted vs experimental Nusselt numbers for Gupta’s data using the eddy viscosity correlation of 
Mizushina and Ogino [14] with the B coefficient from Edwards and Smith [lo] and applying the 

Seder-Tate correction factor. 
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experimental data of Gupta [19] and Friend [21] and 
theoretical predictions show good agreement over the 
Reynolds number range of 6 x 103-1.5 x 10’ (Figs. 8 
and 9). No systematic deviations between experiment 
and theory are observed. 

(3) Over the range of experimental data examined 
the eddy viscosity expressions of Mizushina and Ogino 

[14] and van Driest [lS] show the best agreement. 

(4) The expression of Mizushina and Ogino is 
recommended for general use rather than the van 
Driest expression because the former shows much 
better performance with drag-reducing fluids. 

(5) The expression of Edwards and Smith and 
Arunachelem, Hummel and Smith [17] for the calcu- 
lation of the E coefficient for drag-reducing fluids give 
similar predictions. 
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APPENDIX 

The effective radial flux is given by 

(Al) 

From the equation of motion the analogous expression to 
equation (Al) is 

f,*crr=(p+pc )% 
‘I ay 

t.42) 

If we assume the radial flux to vary linearly [ 10,261 then we 
can combine equations (Al) and (A2) to give 

Integrating equation (A3) from the wall to the centreline and 
introducing the turbulent Prandtl number Prt, gives 

where 

i 

-+ 
L’z ” 

+ v o Pr,,dC (A4) 

T,++ = 
TR+ - Tw _ &,/2) 
(4wlPc,~*) C ho 

Rearranging 

ChO = J&,/2) i 

The basis of this coefficient, Cho, can be transferred to the 
bulk temperature using a simple expression developed by 
Kader and Yaglom [ll]. These authors suggested an approx- 
imate relationship between the dimensionless heat transfer 
coefficient based on the centreline temperature and that based 
on the bulk temperature, i.e. 
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where /? is a constant. Equation (A6) is based on the 
logarithmic temperature profile relationship 

To - t 
- = -aln(y/R) + 8, 

T* 
(A7) 

where 

7-8 =?!!- 
pc,v* 

and a and /Ii are constants. The constant /l in equation (A6) 
was derived by Kader and Yaglom to be 1Sa. If we assume 
equation (A7) to be analogous to the corresponding logarith- 
mic equation for velocity profiles, then a would be expected to 
be 2.5 and hence B to be 3.75. A value of 3.75 is used 
throughout this work. A slightly different value was used by 
Kader and Yaglom in their original work. 

(A5) and (A6) gives 

(Pr - Pr,,) + Pr,,C& - 8. W) 

Goldstein [27] has given a relationship between maximum 
and bulk velocities, i.e. 

-+ 
%, = 

4.07 &,/2) + 1 

&,/2) 

Substituting equation (A9) into equation (A8) gives 

Ch = &,/2) i 
I s 6; 

(Pr - Prl,) 
d$ 

0 (1 + (pr/Pr,,)(ps,,/~)) 

(4.07 ,/(C,/2) + 1) - /I. (AK’) 

This equation can be solved for the dimensionless heat 
transfer coefficient if the eddy viscosity is known as a function 
of the velocity. A slightly less accurate form was proposed by 
Reichardt [26]. 

TRANSFERT THERMIQUE DANS UN ECOULEMENT TURBULENT EN CONDUITE 
DE FLUIDES NON-NEWTONIENS A REDUCTION DE FROTTEMENT 

R&sum&Une approche thtorique basC sur les formulations de viscosite turbulente newtonienne est 
appliqute au calcul des coefficients de transfert pour des liquides non-newtoniens a reduction de frottement, 
dans un icoulement turbulent pleinement dtveloppe en conduite. Des donnees anterieures de Gupta [19] et 
Friend [21] pour des nombres de Reynolds entre 6 x 10’ et 1,5 x lo5 sont comparbs avec les valeurs 

calculies et on obtient un bon accord. 

WARMEUBERGANG AN NICHT-NEWTON’SCHE WIDERSTANDSVERMINDERNDE 
FLUIDE BE1 TURBULENTER ROHRSTRGMUNG 

Zusammenfassung-Es wurde eine theoretische Untersuchung auf der Grundlage der newton’schen Schein- 
Viskositatsbeziehungen gemacht, urn die Wiirmeiibergangskoellizienten bei voll ausgebildeter turbulenter 
Rohrstromung von nicht-newton’schen widerstandsvermindernden Fluiden zu berechnen. Zum Vergleich 
wurden die Daten von Gupta [19] und Friend [21] herangezogen, die vor kurzem veriiffentlicht wurden. Die 

Reynolds-Zahlen lagen im Bereich von 6 x lo3 bis 1,5 x 10’. Es zeigte sich gute Ubereinstimmung. 

TEflJIO.l-lEPEHOC K HEHbIOTOHOBCKHM H CHMXAIOIl@IM COfIPOTHBJIEHHE 
THAKOCTXM llPA TYPEYJIEHTHOM TE’IEHHM B TPY6E 

AHHOTUM- HbmTOHOBCKHe COOTHOWeHHR ana KOW$@HUHeHTa T)'#$'JleHTHOl-0 nepeMeuHeaHHn 

HCnOJlb30BaHbl LUIR PaC'ieTa K03f&$HUHeHTOB TeIlJlOO6MeHa HeHbIOTOHOBCKHX U CHWXCah3UHX COll&JO- 

THBJleHHe XCHnKOCTeii npH nOJlHOCTbE0 pa3BHTOM T)'&'JIeHTHOM TeVeHHH B rpy6e. ~OJI)'WHHbR. 

3HaSeHHR CpaBHHBanHCbC ~HeeOIly6JlHKOBaHHbIMH~aHHbIMH~YIlTbIH~~HJla BnHXla30He3HWieHHi-i 

uncna PeiiHOnbnCa OT 6 ‘IO3 no 1,s’ IO’ H nonyqeso xopomee COOTBeTCTBHe. 


